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Introduction 

The inertial wheel pendulum is a classic under-actuated system. The mechanical structure has 2 
degrees of freedom: a free-swinging base joint and an actuated inertial wheel. Figure 1 provides 
an illustration of a canonical inertial wheel pendulum. The system is mechanically simple with 
well-understood dynamics, but it is nontrivial to control. Innovative control systems for this 
system is still an active field of research. In fact, the inertial wheel pendulum often serves as a 
testbed for new control algorithms because of its simplicity. That being said, there exists many 
established controllers that can reliably control the system. In this project, the problem of 
inverting an inertial wheel pendulum will be tackled with a hybrid control system. The objectives 
of the project are to build the system, stabilize the system at the upright position, and drive the 
system to the upright position from any initial condition.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hardware Description 
Mechanical Hardware 
As illustrated in Figure 1., the pendulum has two joints, which will be referred to as the “base 
joint” (𝜃!) and the “wheel joint” (𝜃") in this project. The base joint is a free-spinning pin joint. 
The wheel joint is a pin joint directly driven by the motor. Both joints will have an encoder. The 
base joint will have a magnetic encoder (AS5047P). The wheel joint encoder is built into the 
motor (Pololu 50:1 Metal Gearmotor 37Dx70L mm with 64 CPR Encoder). Both the pendulum 
and the wheel will be made out of laser-cut acrylic. Figure 2 and figure 3 shows the CAD of the 
link and the wheel. 

Figure 1. Illustration of a canonical inertial wheel pendulum. Adapted from [1] 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Electrical Hardware 
The AS5047P and motor encoders supports ABI outputs, which can be directly interpreted by 
both the PSoC and 8051. A commercial MC10C motor controller board will be used for driving 
the motor. A current feedback system will be built for closed-loop motor current control. The 
feedback system consists of differential amplifiers and a maximum value clamp circuit. The 
schematic of the system is shown in figure 4. 
 
Safety Features 
The entire pendulum will be enclosed in a box for safety reasons. 
 
 

Figure 2. Inertial wheel CAD 

Figure 3. Pendulum link CAD 



 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Software Description 

The software, primarily for controlling the pendulum, is split between the 8051 and PSoC. 8051 
will contain the closed-loop motor controller code. The PSoC will contain the high-level 
controller code. 
 
8051 
The main function of the 8051 code is to provide closed-loop torque control on the motor. It 
takes in inputs from the PSoC in the form of target motor torque and achieve so with a closed-
loop controller. Since DC motor torque is governed by the equation 

𝜏# = 𝐾$𝑖 
torque control can be achieved with current control. The 8051 closes the loop on current and 
sends a PWM signal to the motor driver boards, which outputs the motor armature voltage. The 
current dynamics are characterized with the standard DC motor equations. 
  
PSoC  
The PSoC generates high level control output, which is sent to the 8051 to control the motor. The 
software is just an implementation of the control laws, described in more detail in the next 
section and appendix. The PSoC also takes in readings from the 2 encoders and form a state 
vector  
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for controlling the pendulum. 
 

Figure 4. Current Feedback Circuit 
Schematic 



Figure 5 is a block diagram of the system. 

 
 
The software flow is shown in figure 6. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Controlling the Pendulum 
There are 2 modes of operations in this system: stabilization and swing-up. The former uses an 
LQR controller and the latter uses an energy-shaping controller. The PSoC will decide which one 
to use depending on the state vector. The controller matrices for LQR will be precomputed and 
hard-coded onto the PSoC. Control laws for the energy-shaping controller will also be derived in 
advance. The appendix provides the derivation of the controllers. 
 

Figure 5. Inertial wheel pendulum system block diagram 

Figure 6. Software flow diagram 



Project Scope and Management 
The project can be broken down into the following parts, listed in completion priority: 

1. Building the mechanical hardware of the system 
a. Design the parts required for the system 
b. Manufacture the parts 
c. Assemble the inertial wheel pendulum 

2. Building the basic software of the system 
a. Implement a closed-loop torque controller with 8051 
b. Read encoder values with the PSoC 
c. Achieve communication between the PSoC and 8051 
d. Have all sensor inputs and actuator outputs available on the PSoC 

3. Achieving stabilization at upright position 
a. Calculate and linearize the dynamics of the inertial wheel pendulum about the 

upright position 
b. Use MATLAB to find the optimal A,B,C,D matrices 
c. Implement the controller on the PSoC 
d. Test the system and tune the matrices 

4. Converging to upright from any initial condition 
a. Design a controller that can move the inertial wheel pendulum to the admissible 

range of the LQR controller 
b. Implement the controller on the PSoC 
c. Design and implement a decision rule for switching controllers 
d. Test and tune the controller  

 
1~3 are basic project goals. 4 is more advanced and is relatively disjoint from the others. 
 

Special Components 
The following parts are required for this project. All of them have be obtained: 

1. 1* DC motors with built in encoder 
2. 1* Rotary encoder (AS-5047P) 
3. Motor driver board (Cytron MD 10C) 
4. Stock acrylic to cut into parts 
5. Pillow block bearing for mounting the pendulum 
6. Screws, hubs, shafts, and other miscellaneous items for assembly 

 
Timetable 

Week of 4/16: Build the pendulum 
Week of 4/23: Enable communication between PSoC, 8051, actuator, and sensors 
Week of 4/30: Complete full sensor reading and actuator control 
Week of 5/7: Implement and tune the control algorithms 
Week of 5/14: Buffer time 
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Appendix: Derivation of the Control Laws 
 

In the appendix, the variable definitions from Figure A1 will be used for all derivations.  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

System Dynamics 
Equation of Motion 
Define the generalized coordinates 𝑞 and the system state 𝑥 as follows: 

𝑞 = /𝜃!𝜃"
0 , 𝑥 = 2

𝑞
𝑞̇3 

Assuming no damping, the system equation of motion is 
𝑀𝑞̈ = 𝜏%(𝑞) + 𝐵𝑢	 

with 

𝑀 = /𝑚!𝑙!" +𝑚"𝑙"" + 𝐼! + 𝐼" 𝐼"
𝐼" 𝐼"

0 , 𝜏% = 2−(𝑚!𝑙! +𝑚"𝑙")𝑔 sin 𝜃!
0

3 , 𝐵 = 2013 

and 𝑢 = 𝜏, the control input. [1][ 
 

LQR Controller 
Linearization 
The system can be linearized around the fix point objective 𝜃! = 𝜋. Writing out the state space 
representation of the system gives 
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We are interested in the upright fixed point 𝜃! = 𝜋. Around fixed points, 𝑥̇ = 0. Let 𝜏% = 𝜏& +
	𝜏̅, 𝑢 = 𝑢& + 𝑢J. 𝜏& and 𝑢& cancel out each other. It can be verified that at this fixed point, 𝜏& = 0 
and 𝑢& = 0. Linearize 𝜏% to get 

𝜏%(𝑥) = 𝜏& + 𝜏̇%𝑥̅ 
where, at the fixed point,  

Figure A1. Illustration of a canonical inertial wheel pendulum. Adapted from [1] 
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The EOM becomes 
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Notice that the inertia matrix 2𝐼" 0
0 𝑀3 is positive definite, so it is always invertible. 

 
LQR Design 
Upon close inspection, 𝜃" does not affect the evolution of other state variables. Since 𝜃" is 
irrelevant in this system (the wheel position does not matter), it should be eliminated from the 
LQR state space. Define the reduced state 

𝑥( = P
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The new state evolution equation becomes 
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The matrices Q, R can be chosen arbitrarily. Putting this into a solver yields the optimal control 
law, in the form of  

𝑢 = −𝐾𝑥( 
The controller can be switched on and will guarantee convergence to the upright position as long 
as the state is within the region of attraction. 
 
 

Energy-Shaping Controller 
Motivation 
One can see that the pendulum will always “pass” the target state at some point as long as the 
total mechanical energy is correct. Therefore, instead of driving the pendulum to a specific point, 
it is driven to a specific energy level. However, under this condition, the system can “swing 
around” if a small perturbation is applied. To resolve this problem, once the pendulum gets close 
enough to the upright position, the LQR controller switches on to ensure local stability.  
 
Non-collocated Feedback Linearization 
Since we are interested in controlling 𝜃! but only have actuation on 𝜃", a non-collocated 
feedback linearization must be used to achieve the desired energy level. Recall the EOM of the 
system: 

(𝑚!𝑙!" +𝑚"𝑙"" + 𝐼! + 𝐼")𝜃!̈ + 𝐼"𝜃"̈ = −(𝑚!𝑙! +𝑚"𝑙")𝑔 sin 𝜃!	 
𝐼"𝜃!̈ + 𝐼"𝜃"̈ = 𝑢 

For non-collocated feedback linearization on 𝜃!, we eliminate 𝜃". Define the following: 



𝑎 = 𝑚!𝑙!" +𝑚"𝑙"" + 𝐼! + 𝐼" 
𝑏 = 	 (𝑚!𝐼! +𝑚"𝐼")𝑔 sin 𝜃! 

𝑐 = 𝑚!𝐼! +𝑚"𝐼" 
Then the EOM in terms of 𝜃! becomes 

(𝑎 − 𝐼")𝜃!̈ = −𝑏 − 𝑢 
Select the control input 𝑢 as 

𝑢 = 𝑢) + 𝑢* , 𝑢) = −𝑏, 𝑢* = (𝐼" − 𝑎)𝜃!*̈  
 
𝜃!*̈  is the desired acceleration. This way, the system dynamics can be canceled, and  

𝜃!̈ = 𝜃!*̈  
 
Energy Shaping 
For convergence to the upright position, rotational kinetic energy about 𝜃" is irrelevant. 
Therefore, the wheel rotational velocity is disregarded, and we have 

𝐸 =
1
2𝑎	𝜃!̇

" − 𝑐 cos 𝜃! 
The desired energy is 

𝐸* = 𝑐 
Define the energy error 𝐸W  as  

𝐸W = 𝐸 − 𝐸* 
Evaluate the derivative of 𝐸W  

𝐸Ẇ = 𝑎𝜃!̇𝜃!̈ + 𝑐𝜃!̇ sin 𝜃! 
= 𝜃!̇(𝑎𝜃!̈ + 𝑏) 

Select the target acceleration 

𝜃!*̈ = −
𝑏
𝑎 −

𝑘𝜃!̇𝐸W
2  

The energy derivative becomes  
𝐸Ẇ = −𝑘𝜃!̇

"𝐸W ≤ 0 
The system will converge to the desired energy level except when 𝜃!̇ = 0. This is a transient 
state except when 𝜃!̇ = 𝜃! = 0. The issue is easily compensated through adding a small 
perturbation when necessary. The full control law is therefore 

𝑢 = 𝑢) + 𝑢* = −𝑏 +
(𝐼" − 𝑎)𝑏𝑘𝜃!̇𝐸W

2𝑎  
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